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Numerical computation of the scattering matrix of an electromagnetic resonator
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A method is presented to investigate diffraction of an electromagnetic plane wave by an infinitely thin
infinitely conducting circular cylinder with longitudinal slots. It is based on the use of the combined boundary
conditions method that consists of expressing the continuity of the tangential components of both the electric
and the magnetic fields in a single equation. This method proves to be very efficient for this kind of problem
and leads to fast numerical codes. The scattering matrix that is obtained from this theory can then be used in
a multiscattering method to study wave propagation in square arrays of such resonators with an emphasis on
the low-frequency behavior.
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I. INTRODUCTION

It has recently been shown that periodic arrays of meta
rods, i.e., two-dimensional metallic photonic crystals@1–4#,
could exhibit extremely unusual properties with respect
wave propagation@5–7#. Some of these artificial material
have been called ‘‘left-handed’’ because they behave a
they had negative permeability and permittivity@8–12#. The
geometry of the scatterers at issue is that of resonator, m
of layered curved strips. In the present work we presen
numerical method to compute the scattering matrix of suc
curved striped device. This scattering matrix can then
used to study numerically wave propagation inside a fin
array of such resonators. This numerical study will be p
sented in a future work@13#, we just give here a brief expo
sition of the numerical method.

The problem of the penetration of electromagnetic wa
in a conducting circular cavity through a narrow axial ap
ture has been treated by several authors. Several met
have been used to achieve the determination of the field
side the cavity. Beren@14# used the aperture field integra
equation, the electric field integral equation, andH-field in-
tegral equation to determine the field around an axially s
ted cylinder, while Johnson and Ziolkowski@15# gave a gen-
eralized dual series solution for this problem. Mautz a
Harrington treated the field penetration inside a conduc
circular cylinder through a narrow slot in both TE@16# and
TM @17# polarizations. More recently Shumpert and But
@18,19# proposed three methods to study the penetration
conducting cylinders. In this article, we propose a method
calculate the field inside and around a slotted circular ca
with longitudinal slots. It is based on the combined bound
conditions method introduced first by Montiel and Nevie`re
@20,21#. Section II is dedicated to the description of th
theory. In Sec. III we give some details about the numer
scheme and then compare our results with previous w
We also give some preliminary results on the electrom
netic behavior of an array of resonators.

II. SCATTERING THEORY

The structure under study is depicted in Fig. 1. The sp
is divided into two regions: region 1~exterior region:
1063-651X/2002/66~2!/026602~6!/$20.00 66 0266
c

o

if

de
a
a
e
e
-

s
-
ds

n-

t-

d
g

r
in
o
y
y

l
k.
-

e

r .R) and region 2~interior: r ,R) that are assumed to b
dielectric and homogeneous with relative dielectric perm
tivities «1 and «2, respectively. On the interface betwee
these two media are deposited a finite number of infinit
conducting, infinitely thin circular strips that are invaria
along thez direction. The device is illuminated by a TM
~electric field parallel to thez axis! or TEz ~magnetic field
parallel to thez axis! monochromatic electromagnetic wav
under incidenceu0 with vacuum wavelengthl.

Throughout this paper we assume an exp(2ivt) time de-
pendence. Thez component of the electric or the magnet
field will be denoted byu(u,r ). We denote byV1 the union
of the strips and byV2 its complementary in@0,2p#.

In the exterior region we express the total field as

u1~u,r !5 (
nPZ

anJn~k1r !exp~ inu!

1 (
nPZ

bnHn
(1)~k1r !exp~ inu!. ~1!

FIG. 1. Geometry of the problem: a TEz or a TMz polariz
plane wave illuminates the slotted cylinder.
©2002 The American Physical Society02-1
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Likewise in the interior region the total field may be e
pressed as

u2~u,r !5 (
nPZ

cnJn~k2r !exp~ inu!, ~2!

wherean , bn , andcn are the amplitudes of the incident, th
diffracted and the transmitted waves, respectively. We den
Jn andHn

(1) the Bessel and the Hankel functions of the fi
kind. kp5k0A«p5(2p/l)A«p, with p51,2 andZ denotes
the usual set of relative integers.

Amplitudesan being known, the problem is to determin
amplitudesbn andcn from which the total field can be cal
culated everywhere. For that purpose one must write
boundary conditions at the interface between both dielec
media. This is done in the next subsections by distinguish
the TMz and the TEz cases of polarization.

A. TMz polarization

The boundary conditions applied to the tangential com
nents of the electromagnetic field at the interface defined
r 5R lead to

u1~u,R!5u2~u,R!, ;uP@0,2p#, ~3a!

S du1

dr D
(u,R)

5S du2

dr D
(u,R)

, ;uPV2 . ~3b!

With the supplementary condition that the electric field m
vanish on the strips

u1~u,R!5u2~u,R!50, ;uPV1 . ~4!

Following Montiel and Nevie`re @20,21#, Eqs. ~3b! and ~4!
can be combined in a single equation that holds for everu
in @0,2p#:

@12x~u!#u2~u,R!1gx~u!F S du2

dr D
(u,R)

2S du1

dr D
(u,R)

G
50, ;uP@0,2p#, ~5!

wherex(u) is the characteristic function of setV2,

x~u!5H 1 if xPV2 ,

0 elsewhere,

and g is some numerical parameter introduced for dime
sional and numerical purposes. Remark that the set of
~3a!, ~3b!, and ~4! is equivalent to the set of Eqs.~3a! and
~5!. Sincex(u) is 2p periodic it can be expanded in Fourie
series

x~u!5 (
pPZ

xp exp~ ipu!. ~6!

Reporting Eqs.~1! and~2! into Eq.~3a! and projecting on the
@exp(inu)#nPZ basis gives
02660
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anJn~k1R!1bnHn
(1)~k1R!5cnJn~k2R!, ;nPZ. ~7!

Then reporting Eqs.~1!, ~2!, and~6! into Eq.~5! and project-
ing on the@exp(inu)#nPZ basis leads to

cnJn~k2R!2 (
pPZ

xn2pcpJp~k2R!

1g(
pPZ

xn2p$k2@cpJp8~k2R!#2k1@apJp8~k1R!

1bpHp
(1)8~k1R!#%50, ;nPZ, ~8!

where the primes denote derivation with respect tor. From
Eq. ~7! one can extractcn ,

cn5
Jn~k1R!

Jn~k2R!
an1

Hn
(1)~k1R!

Jn~k2R!
bn , ;nPZ, ~9!

and report its expression into Eq.~8! to obtain the following
linear system linking the amplitudesan andbn :

anJn~k1R!1 (
pPZ

xn2pap

3F2Jp~k1R!1gk2

Jp~k1R!

Jp~k2R!
Jp8~k2R!2gk1Jp8~k1R!G

52bnHn
(1)~k1R!1 (

pPZ
xn2pbpFHp

(1)~k1R!

2gk2

Hp
(1)~k1R!

Jp~k2R!
Jp8~k2R!1gk1Hp

(1)8~k1R!G . ~10!

The solution of the linear system~10! gives the unknown
amplitudesbn and then Eq.~9! gives the amplitudescn .
Thus the field can be computed everywhere in space u
Eqs.~1! and ~2!.

B. TEz polarization

For this case of polarization, the continuity of the tange
tial components of the electromagnetic field at the interfa
defined byr 5R leads to

1

«1
S du1

dr D
(u,R)

5
1

«2
S du2

dr D
(u,R)

, ;uP@0,2p#, ~11a!

u1~u,R!5u2~u,R!, ;uPV2 . ~11b!

With the supplementary condition that the electric field m
vanish on the strip
2-2



sing

ity

NUMERICAL COMPUTATION OF THE SCATTERING . . . PHYSICAL REVIEW E66, 026602 ~2002!
1

«1
S du1

dr D
(u,R)

5
1

«2
S du2

dr D
(u,R)

50, ;uPV1 . ~12!

Here again we can replace Eqs.~11b! and ~12! by

@12x~u!#
1

«2
S du2

dr D
(u,R)

1gx~u!@u2~u,R!2u1~u,R!#

50, ;uP@0,2p#. ~13!

Reporting Eqs.~1! and ~2! into Eq. ~11a! and projecting on
the @exp(inu)#nPZ basis gives

anJn8~k1R!1bnHn
(1)8~k1R!5

k2

k1

«1

«2
cnJn8~k2R!, ;nPZ.

~14!

We remark that the set of Eqs.~11a!, ~11b!, and ~12! are
equivalent to the set of Eqs.~11b! and ~13!. Reporting Eqs.
~1!, ~2!, and ~6! into Eq. ~13! and projecting on the
@exp(inu)#nPZ basis leads to

k2

«2
cnJn8~k2R!2

k2

«2
(
pPZ

xn2pcpJp8~k2R!

1g(
pPZ

xn2p$cpJp~k2R!

2@apJp~k1R!1bpHp
(1)~k1R!#%50, ;nPZ.

~15!

From Eq.~14! one can extractcn ,

cn5
k1

k2

«2

«1
S Jn8~k1R!

Jn8~k2R!
an1

Hn
(1)8~k1R!

Jn8~k2R!
bnD , ;nPZ,

~16!

and report its expression into Eq.~15! to obtain the following
linear system linking the amplitudesan andbn :

FIG. 2. Electromagnetic penetration into a circular cav
through a narrow slot.
02660
an

k1

«1
Jn8~k1R!1 (

pPZ
xn2papF2

k1

«1
Jp8~k1R!

1g
k1

k2

«2

«1

Jp~k2R!

Jp8~k2R!
Jp8~k1R!2gJp~k1R!G

52bn

k1

«1
Hn

(1)8~k1R!1 (
pPZ

xn2pbpF k1

«1
Hp

(1)8~k1R!

2g
k1

k2

«2

«1

Jp~k2R!

Jp8~k2R!
Hp

(1)8~k1R!1gHp
(1)~k1R!G . ~17!

The solution of the linear system~17! gives the unknown
amplitudesbn and then Eq.~16! gives the amplitudescn .
Thus the field can be computed everywhere in space u
Eqs.~1! and ~2!.

FIG. 3. ~a! Magnitude of normalized electric field on thex axis
of a slotted circular cylinder excited by TMz plane wave$k1R
50.7,u05180°,f55°%. ~b! Magnitude of normalized electric field
on thex axis of slotted circular cylinder excited by TEz plane wave
$k1R50.7,u050°,f55°%.
2-3
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III. NUMERICAL RESULTS

The infinite linear systems~10! and~17! are truncated to a
finite size by retaining only (2N11) coefficients and solved
to obtain a representation of the field at truncation orderN.
The convergence of the results has been checked by inc
ing integerN and using the usual criteria of energy balan
~optical theorem! and reciprocity. We have also verified th
the boundary conditions are fulfilled, for instance the null
of the tangential electric field on the strips. In all the calc
lations carried in this paper we setg521023. However, as
mentioned in Ref.@22#, numerical experiments show tha
only the sign ofg is of importance: the numerical scheme
more stable with a negative value ofg. All the computations
reported have been obtained on a Personal Computer~200
MHz processor with 32 Mo of RAM!, only a few seconds are
necessary to perform each result shown here.

In the following we provide some numerical exampl
and compare our results with those obtained in previ

FIG. 4. ~a! Normalized electric field amplitude at the center
the cylinder for variousk1R with (u050°,f55°). ~b! Normalized
electric field amplitude at the center of the cylinder for variousk1R
with (u050°,f55°).
02660
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works @16–19#. In our first example, we consider a circula
cavity with a single longitudinal narrow slot~see Fig. 2! with
f55° and we compute the interior field onx axis. Figures
3~a! and 3~b! show the magnitude of the normalized elect
field in both the TMz and the TEz cases of polarization. It can
be seen that our results are in excellent agreement with th
published recently by Shumpert and Butler@18,19# see, for
instance, Fig. 6 in the last reference. In the second exam
we consider a circular cavity with an aperture such thatf
55°. In Figs. 4~a! and 4~b! are plotted the normalized elec
tric field amplitude at the center of the cylinder for vario
values of the parameterk1R for both the TMz and the TEz
cases of polarization. These curves agree with those obta
by Mautz and Harrington@16,17#. It is worth noticing that
the resonances in these plots correspond to the modes o
cavity.

Finally we give the map of the electric field around a
inside the slotted cylinder when excited by a plane wa
such thatk1R corresponds to a mode of the closed cylind
We can see in Figs. 5~a! and 5~b! that the modes

FIG. 5. Map of the electric field for values ofk1R corresponding
to the modes:~a! TM01 and ~b! TM11 of the cylinder.
2-4
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FIG. 6. Transmission through a resonator wi
an opening of 120°. The inset represents the re
nator. The peaks correspond to the natural re
nances.
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TM01(k1R52.404) and TM11(k1R53.832) are excited in-
side the structure.

We give now some preliminary results concerning wa
propagation inside a periodic array of the resonators
scribed above. We consider an array of 737 resonators with
square symmetry. The opening angle of the strip is 120°.
have plotted in Fig. 6 the transmission of one resonator,
transmission being defined as the flux of the Poynting ve
on a segment situated below the photonic crystals. The d
peaks correspond to the resonances where the fiel
strongly localized in the cavity. In order to compute the sc
tered field, we use a multidiffraction technique described
Refs.@23,24#.

We plot in Fig. 7 the transmission versus the wavelen
02660
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through the device, when it is illuminated by a plane wa
As a comparison, we have also plotted the transmission
tained for perfectly conducting rods with the same radius
that of the resonators. We clearly see the opening of g
near the resonances, a phenomena that had already bee
gested@25,26#.

IV. CONCLUSION

We have developed a very efficient and fast meth
adapted to study diffraction of an electromagnetic wave b
finite number of infinitely thin, infinitely conducting strip
deposited on a dielectric cylinder. It is based on the co
bined boundary conditions method. The method is v
ay

set
FIG. 7. Transmission through a square arr
of resonator~solid line!, and the same array with
perfectly conducting rods~light line!. Both reso-
nators and rods have the same radius. The in
shows the structure.
2-5
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simple to implement. The numerical examples that have b
given to illustrate the method are not restrictive. One can
as an incident radiation a beam of any shape. It suffice
calculate its corresponding incident amplitudesan . It is also
s

v

.

02660
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possible to study the radiation pattern of a source locate
the center of the cylinder by making slight changes in
equations. In the near future, we intend to use this scatte
theory to study wave propagation in an array of resonato
pl.

pl.
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