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Numerical computation of the scattering matrix of an electromagnetic resonator
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A method is presented to investigate diffraction of an electromagnetic plane wave by an infinitely thin
infinitely conducting circular cylinder with longitudinal slots. It is based on the use of the combined boundary
conditions method that consists of expressing the continuity of the tangential components of both the electric
and the magnetic fields in a single equation. This method proves to be very efficient for this kind of problem
and leads to fast numerical codes. The scattering matrix that is obtained from this theory can then be used in
a multiscattering method to study wave propagation in square arrays of such resonators with an emphasis on
the low-frequency behavior.
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I. INTRODUCTION r>R) and region 2(interior: r <R) that are assumed to be
dielectric and homogeneous with relative dielectric permit-
It has recently been shown that periodic arrays of metallidivities £, and e,, respectively. On the interface between
rods, i.e., two-dimensional metallic photonic crystels-4],  these two media are deposited a finite number of infinitely
could exhibit extremely unusual properties with respect taconducting, infinitely thin circular strips that are invariant
wave propagatiori5—7]. Some of these artificial materials along thez direction. The device is illuminated by a TMz
have been called “left-handed” because they behave as ifelectric field parallel to the axis) or TEz (magnetic field
they had negative permeability and permittiig—12. The  parallel to thez axis) monochromatic electromagnetic wave
geometry of the scatterers at issue is that of resonator, madmder incidenced, with vacuum wavelengti.
of layered curved strips. In the present work we present a Throughout this paper we assume an exipft) time de-
numerical method to compute the scattering matrix of such @endence. The component of the electric or the magnetic
curved striped device. This scattering matrix can then bdield will be denoted byu(6,r). We denote by}, the union
used to study numerically wave propagation inside a finiteof the strips and by, its complementary if0,27].
array of such resonators. This numerical study will be pre- In the exterior region we express the total field as
sented in a future workl3], we just give here a brief expo-
sition of the numerical method.

The problem of the penetration of electromagnetic waves _ .
in a conducting circular cavity through a narrow axial aper- us(6,r) EZ Andn(kar)exp(ing)
ture has been treated by several authors. Several methods
have been used to achieve the determination of the field in- (1) ;
side the cavity. Berefil4] used the aperture field integral +§Z boH " (kyr ) exp(in ). @

equation, the electric field integral equation, afdield in-
tegral equation to determine the field around an axially slot-
ted cylinder, while Johnson and ZiolkowdKi5] gave a gen-
eralized dual series solution for this problem. Mautz and  [ycident wave
Harrington treated the field penetration inside a conducting
circular cylinder through a narrow slot in both TE6] and

TM [17] polarizations. More recently Shumpert and Butler
[18,19 proposed three methods to study the penetration in
conducting cylinders. In this article, we propose a method to
calculate the field inside and around a slotted circular cavity
with longitudinal slots. It is based on the combined boundary
conditions method introduced first by Montiel and Neeie
[20,21]. Section Il is dedicated to the description of the
theory. In Sec. Ill we give some details about the numerical
scheme and then compare our results with previous work
We also give some preliminary results on the electromag-
netic behavior of an array of resonators.
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Il. SCATTERING THEORY

The structure under study is depicted in Fig. 1. The space FIG. 1. Geometry of the problem: a TEz or a TMz polarized
is divided into two regions: region Xexterior region: plane wave illuminates the slotted cylinder.
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Likewise in the interior region the total field may be ex- andn(kR)+ b HB(k;R)=c,dn(kR), VneZ. (7)
pressed as
) Then reporting Eq91), (2), and(6) into Eq.(5) and project-
“2(9'”:%2 Cndn(kzr)exping), (2 ing on the[exp(nf)],., basis leads to

wherea,,, b,, andc, are the amplitudes of the incident, the

diffracted and the transmitted waves, respectively. We denote  c,J,,(k,R) — >, Xn-pCpdp(K2R)
J, andHV the Bessel and the Hankel functions of the first pe’

kind. ky=Kov/e,=(27/\) e, with p=1,2 andZ denotes

the usual set of relative integers. +92 Xn-ptkal Cpdp(KaR)]—ky[apdp(kiR)
Amplitudesa,, being known, the problem is to determine pel
amplitudesb,, andc, from which the total field can be cal- +pr§)1)’(k1R)]}=0, VneZ, (8)

culated everywhere. For that purpose one must write the
boundary conditions at the interface between both dielectric . o .
media. This is done in the next subsections by distinguishingvhere the primes denote derivation with respect.térom

the TMz and the TEz cases of polarization. Eqg. (7) one can extract,,
A. TMz polarization In(KR) H(l)(klR)
n n
The boundary conditions applied to the tangential compo- C”:Jn(sz) an+ 3.(GR) b,, VneZ, 9
nents of the electromagnetic field at the interface defined by
r=Rlead to
and report its expression into E@) to obtain the following
ui(6,R)=uy(0,R), V6oe[0,27], (3@ linear system linking the amplitudes, andb,,:
(du1> (du2> VoeO (3b)
e == , el)s,.
dr (6.,R) dr (6.R) aan(klR)"‘pEE:Z Xn-p@p

With the supplementary condition that the electric field must

Jp(kiR
vanish on the strips % p(kiR)

Jp(kaR)

_\]p(klR)+gk2

‘];’)(sz)_gkl\]{)(klR)}

Ul(e,R):UZ(e,R):O, VﬁEQ]_. (4)

=—b,HV(KR) + _b[H(l)kR
Following Montiel and Neviee [20,21], Egs. (3b) and (4) nHn (kR gz Xn-pPp Hp"(KiR)

can be combined in a single equation that holds for every

. _ HV(k,R)
n [0,27T] o p 1 ’ (1)r
ng ‘Jp(kZR) Jp(kZR)+gk1Hp (klR) . (10)
2 dug
[1=x(0)]ux(6,R) +9x(O)| | 4~ | ar
(6,R) (6,R) The solution of the linear systerfi0) gives the unknown
_ amplitudesb,, and then Eq.9) gives the amplitudeg,,.
0, V0e[02m], © Thus the field can be computed everywhere in space using
where x(6) is the characteristic function of sé,, Egs.(1) and(2).
1 if xeQ,,

B. TEz polarization
0 elsewhere,

x( 0)=(
For this case of polarization, the continuity of the tangen-

. . . : tial components of the electromagnetic field at the interface
and g is some numerical parameter introduced for dimen-

sional and numerical purposes. Remark that the set of qu.eflned byr =R leads to

(3a), (3b), and(4) is equivalent to the set of Eq&3a) and 1 (du, 1 (du,
(5). Sincex(0) is 27 periodic it can be expanded in Fourier —(d—> Z—(d—) , V0e[0,27], (113
series eul O pry #2101 (R
x(0)= EZ Xp EXP(ip6). (6) ui(6,R)=uy(6,R), Voe,. (11b
pe’

Reporting Egs(1) and(2) into Eq.(3a) and projecting on the With the supplementary condition that the electric field must
[exp(né)],.; basis gives vanish on the strip
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FIG. 2. Electromagnetic penetration into a circular cavity
through a narrow slot.

i

Here again we can replace Eq&lb) and(12) by

1

€1

1

€2

du;
dr

du,

— =0, VoeQ,. (12
dr )(G,R)

1/du,
[1—)((0)]((“)

€2

+9x(0)[uz(6,R)—uy(6,R)]
(6.R)

=0, VOe[0,27]. (13

Reporting Eqgs(1) and (2) into Eq. (118 and projecting on
the[exp(né)],., basis gives

Kz

andn(kiR) + b’ (kKiR) =7

€1
—cpdi(kaR), VnelZ.
€2

(19

We remark that the set of Eg§lla), (11b), and (12) are

equivalent to the set of Eq§l1lb) and(13). Reporting Egs.
(1), (2), and (6) into Eq. (13) and projecting on the
[exp(né)],.; basis leads to

k, , ks, ,
;2 Cndn(k2R) — :2 EA Xn- pCpJp( kaR)

+ ng/ anp{CpJp(kZR)

—[apdp(kiR) +b,HP(kR) [} =0, VneZ.

(15)
From Eq.(14) one can extract,,,
ky &5 [ In(kiR) HP (k;R)
Cn:ki PR n ' n| VneZ
281 Jn(sz) Jn(sz)
(16)

and report its expression into Ed.5) to obtain the following
linear system linking the amplitudes, andb,,:
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FIG. 3. (a) Magnitude of normalized electric field on theaxis
of a slotted circular cylinder excited by TMplane wave{k;R
=0.7,00=180°,¢p=5°}. (b) Magnitude of normalized electric field
on thex axis of slotted circular cylinder excited by TRlane wave
{klR:0.7,00:00,¢:5°}.

Ky _, Ky _,
ang—lJn(klRHEZ Xn-p@p —g—lJp(klR)

o2 3pkaR
ko &1 Jo(KoR)

Jp(kiR)—gJp(kiR)

Ky
—H@r R
€, p (kl )

kq ,
= 7bn7HE11) (kiR)+ E anpbp
€1 peZ

ki g2 Jp(kaR)

H (kR)+gHP (KR
kzglJr’)(sz) o (KiR)+gH;(k1R)

- (17

The solution of the linear systerfi7) gives the unknown
amplitudesb,, and then Eq(16) gives the amplitudes, .
Thus the field can be computed everywhere in space using
Egs.(1) and(2).
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FIG. 5. Map of the electric field for values &fR corresponding
FIG. 4. (a) Normalized electric field amplitude at the center of to the modes(a) TMg; and (b) TM;; of the cylinder.
the cylinder for variouk,R with (6,=0°,4=5°). (b) Normalized
electric field amplitude at the center of the cylinder for vari& . . .
with (6,=0° ¢:p50) y e works[16—19. In our first example, we consider a circular

cavity with a single longitudinal narrow sl¢see Fig. 2 with
Ill. NUMERICAL RESULTS ¢=5° and we compute the interior field onaxis. Figures

The infinite linear system&0) and(17) are truncated to a 3@ and 3b) show the magnitude of the normalized electric
finite size by retaining only (R+ 1) coefficients and solved f1€ld in both the TM and the TE cases of polarization. It can
to obtain a representation of the field at truncation ofder be seen that our results are in excellent agreement with those
The convergence of the results has been checked by increddublished recently by Shumpert and But[éB,19 see, for
ing integerN and using the usual criteria of energy ba|anceinstance, Flg 6 in the last reference. In the second example,
(optical theoremand reciprocity. We have also verified that we consider a circular cavity with an aperture such tat
the boundary conditions are fulfilled, for instance the nullity =5°. In Figs. 4a) and 4b) are plotted the normalized elec-
of the tangential electric field on the strips. In all the calcu-tric field amplitude at the center of the cylinder for various
lations carried in this paper we sgt — 10 3. However, as  values of the parametds;R for both the TM, and the TE
mentioned in Ref[22], numerical experiments show that cases of polarization. These curves agree with those obtained
only the sign ofg is of importance: the numerical scheme is by Mautz and Harringtori16,17. It is worth noticing that
more stable with a negative value @fAll the computations the resonances in these plots correspond to the modes of the
reported have been obtained on a Personal CompRé&  cavity.
MHz processor with 32 Mo of RAN] only a few seconds are Finally we give the map of the electric field around and
necessary to perform each result shown here. inside the slotted cylinder when excited by a plane wave
In the following we provide some numerical examplessuch thatk,R corresponds to a mode of the closed cylinder.
and compare our results with those obtained in previousVe can see in Figs. (8 and Hb) that the modes

026602-4



NUMERICAL COMPUTATION OF THE SCATTERING . .. PHYSICAL REVIEW B6, 026602 (2002

'
PR TR B DT S

____________________________________________________________

——————————————————————————————————————————————————

mmmmdo

FIG. 6. Transmission through a resonator with
an opening of 120°. The inset represents the reso-
nator. The peaks correspond to the natural reso-
nances.
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TMo,(k;R=2.404) and TM,(k;R=3.832) are excited in- through the device, when it is illuminated by a plane wave.
side the structure. As a comparison, we have also plotted the transmission ob-
We give now some preliminary results concerning wavetained for perfectly conducting rods with the same radius as
propagation inside a periodic array of the resonators dethat of the resonators. We clearly see the opening of gaps
scribed above. We consider an array of 7 resonators with  near the resonances, a phenomena that had already been sug-
square symmetry. The opening angle of the strip is 120°. w@ested 25,26
have plotted in Fig. 6 the transmission of one resonator, the
transmission being defined as the flux of the Poynting vector
on a segment situated below the photonic crystals. The deep
peaks correspond to the resonances where the field is We have developed a very efficient and fast method
strongly localized in the cavity. In order to compute the scat-adapted to study diffraction of an electromagnetic wave by a
tered field, we use a multidiffraction technique described infinite number of infinitely thin, infinitely conducting strips
Refs.[23,24]. deposited on a dielectric cylinder. It is based on the com-
We plot in Fig. 7 the transmission versus the wavelengttbined boundary conditions method. The method is very

IV. CONCLUSION

T T 3
—— perfectly conducting rods |
— resonators y

esonance gap

FIG. 7. Transmission through a square array
4 of resonator(solid ling), and the same array with

] perfectly conducting rodflight line). Both reso-
nators and rods have the same radius. The inset
shows the structure.
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simple to implement. The numerical examples that have beepossible to study the radiation pattern of a source located at
given to illustrate the method are not restrictive. One can usthe center of the cylinder by making slight changes in the
as an incident radiation a beam of any shape. It suffices tequations. In the near future, we intend to use this scattering
calculate its corresponding incident amplitu@gs It is also  theory to study wave propagation in an array of resonators.
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